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Highlights
Blocking PU.1 improved
glucose homeostasis,
� Liver, primarily macrophage, PU.1 expression is increased in obese mice and
people.

� Targeting Pu.1 inhibits the inflammatory response in macrophages.

� Pharmacologic Pu.1 inhibition improves glucose homeostasis and alleviates liver
inflammation, steatosis and fibrosis.

� Hepatocyte PU.1 does not play a major role in regulating its metabolic function.
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Inhibition of PU.1 ameliorates metabolic dysfunction and
non-alcoholic steatohepatitis
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Background & Aims: Obesity is a well-established risk factor for PU.1 expression was positively correlated with insulin resistance

type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH),
but the underlying mechanisms remain incompletely under-
stood. Herein, we aimed to identify novel pathogenic factors (and
possible therapeutic targets) underlying metabolic dysfunction
in the liver.
Methods: We applied a tandem quantitative proteomics strategy
to enrich and identify transcription factors (TFs) induced in the
obese liver. We used flow cytometry of liver cells to analyze the
source of the induced TFs. We employed conditional knockout
mice, shRNA, and small-molecule inhibitors to test the metabolic
consequences of the induction of identified TFs. Finally, we
validated mouse data in patient liver biopsies.
Results: We identified PU.1/SPI1, the master hematopoietic
regulator, as one of the most upregulated TFs in livers from diet-
induced obese (DIO) and genetically obese (db/db) mice. Tar-
geting PU.1 in the whole liver, but not hepatocytes alone,
significantly improved glucose homeostasis and suppressed liver
inflammation. Consistently, treatment with the PU.1 inhibitor
DB1976 markedly reduced inflammation and improved glucose
homeostasis and dyslipidemia in DIO mice, and strongly sup-
pressed glucose intolerance, liver steatosis, inflammation, and
fibrosis in a dietary NASH mouse model. Furthermore, hepatic
words: PU.1; Liver; Metabolic dysfunctions; Obesity; Diabetes; NASH; Inflam-
ion; Macrophage; Insulin resistance.
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and inflammation in liver biopsies from patients.
Conclusions: These data suggest that the elevated hematopoietic
factorPU.1promotes livermetabolicdysfunction, andmaybeauseful
therapeutic target for obesity, insulin resistance/T2D, and NASH.
Lay summary: Expression of the immune regulator PU.1 is
increased in livers of obesemice andpeople. BlockingPU.1 improved
glucose homeostasis, and reduced liver steatosis, inflammation and
fibrosis inmousemodels of non-alcoholic steatohepatitis. Inhibition
of PU.1 is thus a potential therapeutic strategy for treating obesity-
associated liver dysfunction and metabolic diseases.
© 2020 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.
Introduction
Obesity and the associated metabolic syndrome are significant
worldwide public health concerns and account for tremendous
costs for the affected individuals, families, healthcare systems,
and society. In particular, obesity is associated with the devel-
opment of insulin resistance, type 2 diabetes (T2D), liver and
cardiovascular diseases, and cancer. Insulin responsive tissues,
including adipose tissue, skeletal muscle, and liver, are pro-
foundly affected by obesity both at biomolecular and functional
levels. Insulin sensitivity in the liver is pivotal in the regulation of
glucose and lipid metabolism.1 Insulin suppresses liver glucose
production by inhibiting glycogenolysis and gluconeogenesis
and stimulating glycogen synthesis, glycolysis and lipogenesis.2

In insulin-resistant state, when insulin fails to adjust lipid and
carbohydrate metabolism, hyperglycemia and dyslipidemia
ensue, and exacerbate the incidence of non-alcoholic fatty liver
disease (NAFLD).3 Indeed, obesity and associated insulin resis-
tance have been established as risk factors of liver fat accumu-
lation, which promotes a liver disease spectrum ranging from
NAFLD to non-alcoholic steatohepatitis (NASH), with possible
progression towards cirrhosis and even hepatocellular carcinoma
(HCC).4–6 In parallel, liver diseases also contribute to the
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development of diabetes.7,8 However, the molecular mechanisms
underlying this association remain insufficiently understood.9

With advances in mass spectrometry (MS)-based proteomics,
substantial progress has been made in elucidating global protein
changes involved in the development of T2D in b cells and adi-
pocytes,10,11 but has not been systematically applied to the liver.
Aiming for quantitative measurement of transcription factors
(TFs) on a proteomic scale, we developed a tandem proteomics
strategy by combining TF response element (TFRE)-affinity
enrichment with liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) identification of endogenous TFs.12,13

Applying this approach to the liver may identify novel regula-
tors of glucose homeostasis and lipid metabolism that
contribute to the pathogenesis of liver dysfunctions in obesity
and T2D.

In the present study, we applied TFRE-affinity enrichment and
an LC-MS/MS approach to mouse liver to identify endogenous TFs
that contribute to insulin resistance. This approach circumvents
low endogenous expression of hepatic TFs, the discrepancy be-
tween protein and gene expression, and antibody reliability. Sur-
prisingly, PU.1/SPI1 was identified and confirmed to be one of the
most upregulated TFs in both diet-induced obese (DIO) and db/db
mouse livers. PU.1 is predominantly expressed in hematopoietic
and lymphatic cells14 and is considered a “master” regulator
responsible for macrophage terminal differentiation and matura-
tion.15–17 Compared to the immune and hematopoietic systems,
less is known about the role of PU.1 in metabolic regulation. Our
studies describedherein reveal that PU.1 is a new therapeutic target
for the treatment of liver dysfunction and metabolic diseases.

Materials and methods
Animals
Mice were maintained in accordance with Institutional Animal
Care and Use Committee guidelines. Male C57BL/6J mice aged
6–8 weeks were purchased from HFK Biotech Co. (Beijing, China)
or Jackson Laboratory (Bar Harbor, ME, USA). Diabetic db/db mice
were obtained from the animal resource center of Nanjing Uni-
versity (Pengsheng Biotech, Nanjing, China). All mice were
housed at 22–24�C with a 12 h/12 h light/dark cycle and pro-
vided water and standard rodent chow ad libitum. In some
studies, male C57BL/6J mice were fed high-fat diet (HFD) (60%
fat, 24% carbohydrates, and 16% protein based on caloric content,
Research Diets D12492) or a NASH-provoking diet (Envigo,
TD.160785) ad libitum for 4 months from 8 weeks of age,18 with
or without treatment with a PU.1 inhibitor (DB1976), synthesized
in Dr. X. Lei's laboratory at Peking University.19

Pu.1flox/flox mice were previously described.20,21 Hepatocyte
Pu.1 conditional knockout mice were generated by breeding
Pu.1flox/flox mice with Albumin-Cre mice (Jackson Laboratory).
Mice were maintained on C57BL/6J background and housed in a
pathogen-free facility at Columbia University with a 12 h/12 h
light/dark cycle and free access to water and standard irradiated
rodent chow (5% energy from fat; Harlan Teklad). All animal
experimental studies were approved and performed in accor-
dance with animal license guidelines and regulations established
by the Columbia University Animal Care Committee.
Metabolic characterization
Glucose tolerance test (GTT) was performed in overnight (16 h)
fastedmicewith an intraperitoneal bolus glucose injection of 1.0 or
2 Journal of Hepatology
2.0 g/kg of bodyweight. The insulin tolerance testwas performed
in 4 h fasted mice with an intraperitoneal injection of 0.5 U/kg of
body weight. Blood glucose was determined from tail bleeds at
the indicated times by glucose meter (Bayer). Liver triglyceride
(TG)was extracted as previously described.22 Plasma and liver TG
were measured by the Infinity triglyceride kit (Thermo Fisher
Scientific). Other plasma lipids were determined by total
cholesterol E kit (Wako Diagnostics) and NEFA reagents (Wako
Diagnostics).

Statistical analysis
Data are represented as mean ± SEM. *p <0.05; **p <0.01; ***p
<0.001 correspond to p value according to the Student's t test.
GraphPad Prism (GraphPad Software, San Diego, CA) was used
for statistical analyses.

For further details regarding the materials and methods used,
please refer to the CTAT table and supplementary information.

Results
Liver PU.1 is elevated in diet-induced obese mice
To systematically examine liver TFs that may contribute to
obesity-induced metabolic dysfunction, we developed a quanti-
tative proteomics strategy, as outlined in Fig. 1A, to survey func-
tional TFs altered in obese mouse liver. Specifically, we
concatenated our previously developed DNA-based affinity
methods with a tandem array of the consensus TFRE or hormone
response element (HRE) pull-down method named TFRE/HRE
pull-down.12,13 The endogenously expressed TFs from lean and
obese mouse livers were enriched by TFRE/HRE pull-down and
then characterized by LC-MS/MS. By this quantitative MS anal-
ysis, a list of TFs was identified with altered expression, either
enriched (>3 fold) or decreased (<50%) in livers from DIO mice
(Tables S2 and S3). Surprisingly, among themost upregulated TFs
was PU.1/SPI1, a master regulator of myeloid cell activity (Fig. 1B
and Fig. S1A). Consistently, the Pu.1 mRNA level was increased
~5-fold in DIO mouse liver compared to chow diet-fed mice
(Fig. 1C).

To determine the source of increased liver PU.1, we isolated
parenchymal cells (PCs) and non-parenchymal cells (NPCs) from
livers of C57BL/6J wild-type mice. As expected, Albumin was
specifically expressed in PCs, whereas the macrophage marker
F4/80 (Adgre1), stellate cell marker Desmin, and endothelial cell
marker Vwf were only detected in fractionated NPCs (Fig. S2A).
Though hepatocyte Pu.1 expression was induced about 3.6-fold
in DIO, Pu.1 was primarily expressed in NPCs (Fig. 1D, E), pre-
dominately in macrophages and B cells (Fig. 1F, Fig. S2B).
Intriguingly, although Pu.1 expression did not change in these
populations, macrophage and B cell number increased about 3-
fold in DIO, though the latter remained a relatively minor
contributor (Fig. 1G). Hepatic T cells and stellate cells (HSCs) did
not substantially contribute to Pu.1 expression in DIO liver
(Fig. 1F, G). Overall, these data suggest that the induction of PU.1
in the obese liver is due to increased hepatocyte Pu.1 expression
and macrophage number.

Pu.1 knockdown in the liver improves glucose homeostasis in
DIO mice
To explore the function of PU.1 in liver metabolism, we devel-
oped small hairpin RNAs (shRNAs) targeting Pu.1 and adminis-
tered the most efficient Pu.1-s6 to DIO mice using an adenovirus
vector (Fig. 2A). Pu.1 knockdown (KD) did not affect body weight
2020 vol. - j 1–10
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(Fig. 2B), but lowered fasting glucose levels (Fig. 2C), improved
glucose tolerance (Fig. 2D), and repressed the expression of Pck1,
a key regulator of gluconeogenesis (Fig. 2E). Livers of KD mice
were slightly larger (Fig. S3A), but hepatic TG and cholesterol,
plasma lipids and alanine aminotransferase (ALT) levels were not
significantly affected (Fig. 2F and Fig. S3B–D). As expected,
adenoviral KD of PU.1 in the liver had minimal effects on adipose
tissue (Fig. S3E).
Pu.1 KD in liver improves glycemic control in diabetic db/db
mice
Next, we asked whether hepatic PU.1 was also increased in a
genetic model of obesity/diabetes, the leptin receptor-deficient
db/db mouse. For better accuracy, we applied SWATH combined
with LC-MS/MS to quantify the enrichment of Pu.1 in the liver
from db/db mice. This approach excludes possible interference
from non-specific detection by PU.1 antibody. We detected >2-
fold enrichment of Pu.1 protein in db/db mouse liver at the kB
motif of the Ig2–4 enhancer, a high-affinity PU.1 binding site,23 in
nuclear extracts of liver tissue from db/db mice compared to
control littermates (Fig. 3A and Fig. S1B). We also confirmed the
induction of PU.1 in db/db mice liver using alternative TFRE motif
enrichment (Fig. 3B and Fig. S1C). These data indicated that PU.1
is similarly induced in the models of genetic and diet-induced
obesity, and that targeting liver PU.1 would also show benefi-
cial effects in db/db mice. Indeed, Pu.1 KD (Fig. 3C), in the setting
of a small, non-significant reduction in body weight (Fig. 3D),
markedly reduced fasting glucose levels (Fig. 3E) without effects
on plasma insulin (Fig. 3F). Similar to DIO mice, Pu.1 KD
improved glucose tolerance in db/db mice (Fig. 3G), and reduced
Pck1 expression (Fig. 3H), without changing plasma TG (Fig. 3I).
Together, these data indicate that the induction of PU.1 in the
liver contributes to the dysregulation of glucose homeostasis in
db/db and DIO mice.
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Hepatocyte-specific ablation of PU.1 has no effects on glucose
metabolism
Since Pu.1 was induced in hepatocytes in DIO mice (Fig. 1E), and
hepatocytes are the exclusive glucose-producing cells in the
liver, we asked whether the glucose-lowering effect of adeno-
viral Pu.1 shRNA was due to reduced hepatocyte PU.1 action. To
this end, we generated hepatocyte-specific Pu.1 knockout mice
by transducing lean Pu.1flox/flox mice with AAV8-TBG-Cre, to
induce hepatocyte-specific recombination.18 Intriguingly, these
mice showed unchanged glucose tolerance (Fig. 4A). Even HFD-
fed Pu.1flox/flox mice transduced with AAV8-TBG-Cre did not
show altered glucose tolerance or insulin sensitivity compared to
AAV8-TBG-GFP transduced mice (Fig. 4B, C). Finally, we crossed
Pu.1flox/flox mice with Alb-Cre mice to conditionally delete PU.1 in
hepatocytes (Alb-Cre:Pu.1flox/flox) without affecting NPC Pu.1
expression (Fig. 4D, E). After HFD feeding for 3 months, knockout
mice showed similar body weight, glucose tolerance, and insulin
sensitivity as control littermates (Fig. 4F–H). These negative re-
sults suggest that improved glucose homeostasis by adenovirus-
mediated Pu.1 KD is not due to loss of hepatocyte Pu.1.
KD of PU.1 in macrophages decreases liver inflammation in
db/db mice
We next investigated a role of macrophage PU.1 in regulating liver
metabolic function. There is accumulating evidence of the
involvement of macrophages in the pathogenesis of insulin resis-
tance and T2D,24–26 andPU.1 has been shown to regulate the entire
macrophage genomic landscape.16,17,27 Consistent with the hy-
pothesis that targeting PU.1 in liver macrophages induces meta-
bolic improvements, Pu.1-s6 adenovirus transduces both
hepatocytes and macrophages (Fig. S4A), without affecting Pu.1
expression in B cells, T cells, or HSCs (Fig. S4B). With >80% down-
regulation of macrophage Pu.1 expression, Pu.1 KD led to the
repressed expression of proinflammatory genes tumor necrosis
sh-control
Pu.1-s6

0
10Bo

dy
 w

ei
gh

t (
g) 50

Body weight
60

D

0

2

m
m

ol
/L

3

Plasma TG
4I

0

R
el

at
iv

e 
m

R
N

A 
le

ve
l

1

Glucose metabolism genes

2

**

Pck1 G6pc Gck Pklr

20
30

40

Pfkl

0

100

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

300

Fasting glucose
400

E

***200 db/+
db/db

3

1

n was enriched by kB-motif (A) or TFRE pull-down (B) from nuclear extracts of
2-week-old male db/dbmice were injected with adenovirus control/Pu.1-shRNA
were analyzed. (C) The KD efficiency of liver Pu.1 was determined by qPCR. (D)
before and after virus administration. (G) GTT. (H) qPCR analysis of glucose
EM. *p <0.05; **p <0.01; ***p <0.001, Pu.1-s6 vs. sh-control, by 2-tailed Student's
FRE, transcription factor response element; TG, triglyceride.

2020 vol. - j 1–10



Control
Alb-Cre

0

0.4

R
el

at
iv

e 
m

R
N

A 
le

ve
l

0.8

PC Pu.1
1.2

D

0

200

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

400

600

**

Chow GTT

30 60 90 1200
(min)

A
AAV-GFP
AAV-TBG-Cre

0

200

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

400

600
HFD GTT

30 60 90 1200
(min)

B

0

100

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

200

300
HFD ITT

30 60 900
(min)

C

0

10

R
el

at
iv

e 
m

R
N

A 
le

ve
l

30

NPC Pu.1
40

E

0

10Bo
dy

 w
ei

gh
t (

g)

30

Body weight
50

F

0

200

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

400

600
 GTT

30 60 90 1200
(min)

G

0

100

Bl
oo

d 
gl

uc
os

e 
(m

g/
dl

)

200

300
ITT

30 60 900
(min)

H
Control
Alb-Cre

20
20

40

Fig. 4. Hepatocyte-specific knockout of PU.1 has no effect on metabolic activities.Metabolic characterizations of acute and congenital hepatocyte-specific Pu.1
knockout mice. (A) GTT in chow-fed male Pu.1flox/flox mice 5 weeks post injection of AAV-TBG-Cre (n = 9) or AAV-TBG-GFP (as control, n = 8) virus. (B–C) In DIO
(HFD-fed for 15 weeks) male Pu.1flox/flox mice, GTT, 10% glucose was used (B), and ITT (C) was performed after 4 weeks post AAV administration (n = 9, 10). (D–H) In
DIO male Pu.1flox/flox:Alb-Cre (n = 10) and control Pu.1flox/flox mice (n = 9), qPCR analysis of Pu.1 expression in PCs (D) and NPCs (E), ** p <0.01 vs. control cells (n = 5,
2-tailed Student's t test); (F) body weight; (G) GTT, and (H) ITT. Data are presented as mean ± SEM. AAV, adeno-associated virus; DIO, diet-induced obesity; GTT,
glucose tolerance test; HFD, high-fat diet; ITT, insulin tolerance test; NPC, non-parenchymal cells; PCs, parenchymal cells.
factor-a (Tnfa), interleukin (Il)-6 and Il-1b inbothKupffer cells (KCs)
and monocyte-derived macrophages (MoMFs) (Fig. 5A, B) and in
the whole liver (Fig. 5C). Consistently, liver TNFa and IL-6 protein
levels were both decreased (Fig. 5D).

PU.1 has been suggested to promote alternative macrophage
polarization.28 But anti-inflammatory macrophage markers
Arg1, Mrc1, Ym1, and Il-10 were all increased in isolated KCs and
MoMFs by Pu.1 KD (Fig. S4C, D). The alternative activation of
macrophages involves peroxisome proliferator-activated recep-
tor (PPAR)c and PPARd, members of the nuclear receptor su-
perfamily.29 The former regulates mitochondrial biogenesis and
b-oxidation of fatty acids in alternatively activated murine
macrophages30; the latter is absolutely required for the full
expression of the effector phenotype of alternative activation of
hepatic macrophages in response to IL-4, which ameliorates
obesity-induced insulin resistance.26 Furthermore, it is well
known that the bindings of PPARc and PU.1 on downstream
target genes are mutually exclusive.31 In support of this notion,
both Pparg and Ppard were upregulated about 2-fold in KCs and
MoMFs in Pu.1 KD liver (Fig. S4C, D). To directly investigate the
proinflammatory role of PU.1 in macrophages, we treated bone
marrow-derived macrophages with lipopolysaccharide (LPS) to
stimulate the inflammatory response and observed a 3.5-fold
induction of PU.1 (Fig. 5E), comparable to its upregulation in
DIO and db/db mouse livers. Importantly, concomitant treat-
ment with DB1976, a highly specific heterocyclic diamidine in-
hibitor of PU.1,32–35 inhibited its induction and activation of
inflammatory markers Tnfa and Il-6 (Fig. 5E). Together, these
data indicate that PU.1 regulates macrophage inflammatory
response, and KD of PU.1 mitigates liver inflammation and im-
proves glucose homeostasis.
Journal of Hepatology
Inhibiting PU.1 by DB1976 improves metabolic dysfunctions
in DIO mice
Since KD of PU.1 in liver macrophages improved glucose ho-
meostasis and hepatic inflammation, we reasoned that targeting
PU.1 may provide a novel therapy for metabolic diseases. Strik-
ingly, treatment with the PU.1 inhibitor DB1976, reduced fasting
glucose (Fig. 6A) and insulin levels (Fig. 6B), leading to normal-
ized glucose tolerance in DIO mice (Fig. 6C). Consistently, hepatic
gluconeogenic genes G6pc and Pck1 were markedly repressed in
DB1976-treated mice (Fig. 6D), and abnormally high basal Akt
phosphorylation in DIO liver36 and white adipose tissue (WAT)
were corrected (Fig. S5A, B), in line with a reduction in fasting
insulin levels (Fig. 6B). Improved glucose metabolism was not
caused by hepatotoxicity, as serum ALT levels remained constant
after DB1976 treatment (Fig. 6E). Instead, consistent with
adenoviral KD, PU.1 inhibitor treatment repressed inflammatory
genes (Fig. 6F) without observed alterations in liver macrophage
infiltration (Fig. 6G). In parallel, macrophage alternative activa-
tion markers Ym1, and Pparg and Ppard were upregulated
(Fig. S5C). T cell (Cd3e) and B cell markers (Cd19 and Cd138) were
downregulated (Fig. S5D), indicating reduced immune cell infil-
tration into the liver. DB1976-treated mice showed a lower body
weight owing to reduced fat mass by MRI (Fig. 6H), with reduced
visceral epididymal WAT (eWAT) and subcutaneous inguinal
WAT (sWAT) deposit sizes (Fig. S5E), and downregulation of
adipocyte genes (Fig. S5F). DB1976 treatment did not affect
macrophage infiltration into eWAT (Fig. S5F, G), but as in the
liver, increased macrophage alternative activation genes
(Fig. S5F). Moreover, unlike acute Pu.1 KD, chronic inhibition of
PU.1 restored dyslipidemia associated with DIO (Fig. 6I) without
affecting hepatic steatosis (Fig. 6J). Taken together, prolonged
2020 vol. - j 1–10 5
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Research Article Experimental and Translational Hepatology
treatment with the PU.1 inhibitor DB1976 recapitulates the
amelioration of hepatic inflammation, hyperglycemia, and
glucose intolerance observed in Pu.1 whole liver KD, and further
demonstrates a pronounced improvement in adiposity and lipid
metabolism.
6 Journal of Hepatology
PU.1 inhibition ameliorates NASH
The progression of NASH is closely related to insulin resistance
and liver inflammation.37,38 We hypothesized that PU.1 could be
a drug target for NASH. To test this, we fed C57BL/6J mice a
NASH-provoking diet for 10 weeks, then treated them with or
2020 vol. - j 1–10



without DB1976 for another 6 weeks on the NASH diet. Pu.1 was
significantly induced in NASH diet-fed mouse liver (Fig. 7A),
which was greatly attenuated by DB1976 treatment (Fig. 7B).
DB1976 treatment improved glucose tolerance (Fig. 7C). As in
DIO mice, inhibitor treatment decreased liver Akt phosphoryla-
tion (Fig. S6A). Hepatic steatosis was significantly reduced in
DB1976-treated mice (Fig. 7D, E), as were plasma ALT levels
(Fig. 7F). As expected, inflammatory genes Tnfa, Il-6, and Il-1b
were markedly downregulated by PU.1 inhibition (Fig. 7G),
together with reduced macrophage infiltration (Fig. 7H, I). The
recently identified NASH-associated macrophage markers Trem2
and Cd939 were also significantly downregulated (Fig. 7I).
Consistent with the alleviated liver inflammation, the expression
of T cell and B cell markers was also reduced (Fig. S6B). Impor-
tantly, DB1976 treatment significantly repressed fibrogenic gene
expression (Fig. 7J) and decreased liver fibrosis (Fig. 7K). As for
DIO mice, DB1976 treatment mildly reduced body weight and
adiposity (Fig. S6C, D), associated with decreased macrophage
infiltration and repressed adipocyte genes (Fig. S6E, F). These
data indicate that inhibition of PU.1 by DB1976 improves multi-
ple NASH-related pathologies.
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Journal of Hepatology
Liver PU.1 expression is associated with insulin resistance and
inflammation in humans
To determine whether PU.1 is associated with insulin resistance
in humans, we analyzed specimens from 38 outpatients under-
going percutaneous liver biopsy. Full demographics are pre-
sented in Fig. 8A. Notably, recruited individuals were
predominantly male (97%), with BMI in the overweight range
(25–30 kg/m2). Although PU.1 expression did not vary by age,
BMI or abdominal circumference, plasma glucose or cholesterol
levels, we found a significant positive correlation between PU.1
expression and plasma insulin levels (Fig. 8B) or HOMA-IR
(Fig. 8C), independent of potential confounding factors. At
multivariate analysis, the association between PU.1 expression
and insulin resistance was independent of the demographic
features of evaluated individuals, but the association with
adiposity was not. Interestingly, in these individuals, we noted
that PU.1 expressionwas elevated in NASH but not steatosis livers
(Fig. 8D) and showed a tight correlation with TNFA mRNA level
(Fig. 8E), in line with our findings in mice. This study further
suggests that PU.1 is involved in the pathogenesis of liver
dysfunction in humans.
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Discussion
Obesity is an established risk factor for the development of T2D
and NAFLD/NASH. Our method of TFRE/HRE pull-down and LC-
MS/MS provides a powerful approach to identify novel TFs that
contribute to these pathogenic changes. The emergence of PU.1
from our survey in the obese liver is surprising considering its
traditional role in myeloid cell functions, as are its pronounced
detrimental effects on hepatic insulin sensitivity, glucose meta-
bolism, NAFLD and NASH. Our studies reveal PU.1 as a hitherto
unknown mediator of the crosstalk between liver inflammation
and metabolism, which thus emerges as a novel drug target for
metabolic diseases.

The induction of PU.1 in the liver is due to increased hepa-
tocyte Pu.1 expression and increased macrophage number,
although hepatocyte Pu.1's contribution to glucose homeostasis
seems negligible, likely due to very low basal expression. In
contrast, Pu.1 is expressed at 200-fold higher amounts in NPCs,
primarily macrophages and to a far lesser extent (~1%), B cells.
HSCs could be another source of PU.1 as their moderate
expression of Pu.1 was induced in obesity. With respect to T cells,
though Pu.1 was expressed at less than 10% as in macrophages,
they may contribute to the induction of PU.1 as their number was
increased in obese livers. Last but not least, dendritic cells are a
relatively sparse but highly heterogeneous population of
antigen-presenting cells in the liver, and they play important
roles in liver inflammation and fibrogenesis.40,41 PU.1 is required
for dendritic cell development and function42; and hence they
could be among the PU.1-targeting cells to contribute to the
metabolic improvements. Pu.1 in B cells, T cells, and HSCs was
not changed by Pu.1 shRNA adenovirus and was thus unlikely to
influence glucose homeostasis and inflammation after adeno-
virus treatment. But we cannot exclude the possibility that the
small-molecule PU.1 inhibitor may affect all liver NPC pop-
ulations, and given the versatility of PU.1 in immune cells as well
8 Journal of Hepatology
as the local microenvironment-dependent functions of immune
cells, the specific role of PU.1 in different NPCs deserves further
study.

In the context of obesity and T2D, both KC activation and the
number of MoMFs increase in the liver,43–45 and they are
considered as promising therapeutic targets for liver diseases.46

Therefore, both MoMFs and KCs likely contribute to the induc-
tion of PU.1 in the obese liver. These data are in line with our
analysis of a recent comprehensive single-cell RNA-sequencing
analysis of NASH NPCs,39 in which we found that Pu.1 is pre-
dominantly expressed in macrophage clusters and a small sub-
population of dendritic cells (Fig. S7), and the Pu.1-expressing
macrophages were markedly increased in NASH NPCs, similar to
DIO model. Moreover, its expression largely overlaps with the
NASH-associated macrophage marker Trem2 (Fig. S7B and D),
which was decreased by PU.1 inhibition (Fig. 7I). Macrophages
display plasticity in their activation programs.26,47 Accumulating
evidence has established the detrimental role of proinflammatory
macrophages and the beneficial role of anti-inflammatory mac-
rophages in the progress of obesity-associated hepatic insulin
resistance.24–26 PU.1 appears necessary for the inflammatory
activation of BMDM. Targeting PU.1 by shRNA or small-molecule
inhibitors reduced the expression of proinflammatory genes (i.e.
Il-6, Il-1b, and Tnfa) in the obese liver, but activated expression of
anti-inflammatory macrophage markers, perhaps by an increase
in PPARc and PPARd activity. PPAR activation can switch nutrient
utilization to fatty acid oxidation,48 and counteracts PU.1 to
repress the inflammatory response in macrophages.31 This could
suggest that PPARc (i.e., pioglitazone)49 and PPARd (i.e., elafi-
branor) agonists50 may improve NASH phenotypes by inhibiting
PU.1's activity in macrophages, a hypothesis worth exploring in
patient-derived specimens. It would be further reasonable to
speculate that PU.1 primes macrophages toward a proin-
flammatory polarization and the metabolic improvements
2020 vol. - j 1–10



observed by targeting PU.1 involve the switch of macrophage
polarization, but genetic tools to determine the specific function
of PU.1 in KCs and MoMFs require greater characterization. The
widely used LysM-Cre line also targets neutrophils and hemato-
poietic progenitors,51 which are required for survival, and thus
ablation of the essential PU.1 may cause lethality. An inducible Cre
model may circumvent the neonatal lethality but remains a blunt
tool, non-specifically targeting all macrophages.

The PU.1 inhibitor DB1976 showed similar but more pro-
nounced benefits than Pu.1 KD. The difference might be caused
by the systemic inhibition of PU.1 beyond the liver. For example,
during obesity, Pu.1 is induced in adipocytes and contributes to
insulin resistance and chronic inflammation,52,53 while macro-
phage infiltration in adipose tissue is often associated with in-
sulin resistance. In support of this notion, DB1976 treatment
displayed anti-obesity effects in both DIO and NASH mice,
accompanied by the downregulation of adipocyte genes and
upregulation of macrophage alternative activated genes. Lean
mice do not decrease body weight upon inhibitor treatment,35

possibly owing to lower tissue macrophage abundance and
raising the possibility that DB1976's functionality is condition-
dependent.

PU.1 is vital for hematopoiesis and the development of
myeloid and lymphatic cells.14 Thus, the safety of potential PU.1
inhibitor for use in chronic T2D or NASH treatment needs clari-
fication. For instance, although it has been shown that myeloid
leukemia shows repressed PU.1, suggestive of a tumor-
suppressive phenotype, leukemic cells are actually more
vulnerable to PU.1 inhibition because of this partial PU.1 loss-of-
function.34 Thus, PU.1 inhibition by shRNA or small-molecule
inhibitors may, in fact, be candidate treatments for leuke-
mia.19,34 DB1976 is an allosteric PU.1 inhibitor, functioning to
disrupt binding of PU.1 to DNA rather than directly binding to
PU.1. DB1976 is highly specific to PU.1 without affecting other
E26 transformation-specific TFs owning to the unique AT-rich
flanking motif in PU.1-binding sites. It has a relatively higher
IC50 than other analogs (105 lM vs. <8 lM) and thus shows a
better safety profile without affecting cell viability.34 As a
consequence, it shows little effect on normal hematopoiesis but
rather specifically induces apoptosis and inhibits proliferation in
leukemia cells,34 without effects on hematopoietic stem cells and
immune cells including B cells and T cells.35 Similarly, we
observed no side effects during our studies. Nevertheless, we
should remain cognizant of these potential effects, and either
optimize DB1976 dosing or pursue liver-specific delivery
methods to maximize risk/benefit. These studies are important,
as our work shows that PU.1 may be a promising therapeutic
target for a broad spectrum of metabolic dysfunctions, including
T2D and NAFLD/NASH.
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